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ABSTRACT: We estimated abundance of the endangered main Hawaiian Islands (MHI) insular 
population of false killer whales Pseudorca crassidens from 1999–2022 using a modeling technique 
that incorporates animal availability in a capture–recapture analysis. The population was sampled 
using different sampling methods, resulting in yearly encounter histories of 265 individuals and 53 
satellite-tagged whales. Survey effort and animal location data were separately analyzed using ker-
nel density estimators, and the degree of overlap between these 2 processes was used to model 
detection probability in a Bayesian Jolly-Seber population model. This approach better addresses 
spatiotemporally variable sampling effort than traditional capture–recapture methods, improving 
the estimation of reliable abundance trends. Using simulated data, the model was robust to many 
sampling and ecological complications, such as variable low detectability, unequal tag deployment 
lengths, and variable social group sizes. Fitting the model to the MHI false killer whale data set, we 
found that the insular population of false killer whales remains small, with an estimated 139 individ-
uals (95% credible interval, CRI = [114, 162]) in 2022. The population appears to be in decline 
throughout the study period, with a mean annual percent change of –1.09 (95% CRI = [–2.11, 
–0.023]) over the entire time series and –3.51 (95% CRI = [–5.08, –1.88]) since 2013, when the 
population was listed as endangered. Given the magnitude of the decline, identifying which of the 
many factors affecting this population is most responsible is key in order to guide potential man-
agement responses.  
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HŌULU‘ULU MANA‘O: Koho mākou i ka nui o nā pūʼuo ʼanehalapohe o nā koholā ʼāhuka iwi poʼo 
like (Pseudorca crassidens) a puni ka paeʼāina ʼo Hawaiʼi (MHI) mai nā makahiki 1999-2022 ma o 
kekahi ʼōnaehana e kālailai ana i ka loaʼa ʼana o ka holoholona i kekahi kālailai loaʼa-loaʼa hou. Mai 
nā makahiki 1999-2022 mai, he mau kiʼina ʼohi hāpana i nānā ʼia a ʼo ka loaʼa, ʼike kūmakahiki ʼia he 
265 koholā iwi poʼo like a he 53 mea i poelele lepili ̓ ia. Kālailai pākahi ̓ ia ke anapūʼuo a me ka ̓ ikepili 
henua ma o nā koho paʼapū kenele, a ʼo ka nui o ke kaulapa ma waena o ia mau ʼelua, ua hoʼohana ʼia 
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1.  INTRODUCTION 

The importance of detecting declines in wildlife 
populations has long been recognized (Ceballos & 
Ehrlich 2002). Even in cases where species extinction 
is not imminent, population decline can lead to local-
ized extirpation and loss of ecosystem function and 
services (Ceballos & Ehrlich 2002, Nichols & Williams 
2006). Identifying that population declines are occur-
ring and the factors that may be driving losses of indi-
viduals is needed to inform conservation and manage-
ment planning. Detecting trends in population growth, 
positive or negative, allows for an evaluation of the ef-
ficacy of management actions and can inform future 
decision-making (Yoccoz et al. 2001). However, the 
challenges of data collection, particularly for dispersed 
or inaccessible species such as marine mammals, can 
lead to time series of abundance or related indices that 
lack the statistical power to detect declines (e.g. 
Taylor et al. 2007). This predicament emphasizes the 
importance of incorporating novel analytical tech-
niques and auxiliary data sets in what may otherwise 
be considered the best available science (e.g. Murphy 
& Weiland 2016) when assessing marine mammal and 
other difficult-to-study wildlife populations. 

False killer whales Pseudorca crassidens are an ex-
ample of a species whose life history and behavior 
makes them challenging to survey and, consequently, 
collect data necessary for robust evaluation of their 
population dynamics. False killer whales are long-
lived (females live well into their 60s) and are slow to 
mature (10–15 yr old at sexual maturity; Ferreira et al. 
2014, Photopoulou et al. 2017). They are strongly so-
cial, known to often travel in large, coordinated 
groups, and exhibit cohesive social structure (Baird et 
al. 2008, Mahaffy et al. 2023). They have a matrilineal 
social structure, with strong, long-term bonds, and 
they are one of a few species where females are known 
to undergo a post-reproductive period (Photopoulou 

et al. 2017, Martien et al. 2019). False killer whales 
 inhabit sub-tropical and tropical oceanic regions 
worldwide (Stacey et al. 1994, Baird 2018, Zaeschmar 
& Estrela 2020), and a number of coastal and island-
 associated populations have been documented (Baird 
et al. 2008, Silva et al. 2013, Zaeschmar et al. 2014, 
Baird 2016, Palmer et al. 2017, Douglas et al. 2023). 
Their generally offshore distribution and tendency to 
move frequently over large spatial domains (Baird et 
al. 2012, Anderson et al. 2020) make it challenging to 
adequately survey their populations. 

The main Hawaiian Islands (MHI) insular popula-
tion of false killer whales is small, last estimated to 
number 167 ± 23 individuals in 2015 (Bradford et al. 
2018). This population is sparse throughout their 
range, with individuals known to move widely among 
and frequently between island areas within the MHI 
(Baird et al. 2012). Individuals preferentially form so-
cial groups, hereafter referred to as ‘clusters’ (Mahaffy 
et al. 2023). Four stable clusters have been recognized 
(Mahaffy et al. 2023) that consist of family members 
and regular associates (Martien et al. 2019). There has 
been some evidence for cluster-specific space-use 
patterns (Baird et al. 2012, 2023, Mahaffy et al. 2023). 
When encountered during survey effort, individuals 
and subgroups within larger groups are often spread 
out, traveling 10s of km apart (Bradford et al. 2014, 
Baird 2016). The MHI insular population of false killer 
whales was listed as endangered under the US Endan-
gered Species Act in 2012 following a decline in recent 
decades (Oleson et al. 2010). The greatest suspected 
threats to this population’s viability include interac-
tions with nearshore fisheries (Baird et al. 2015), expo-
sure to pollutants (Ylitalo et al. 2009, Bachman et al. 
2014, Kratofil et al. 2020), and reduced genetic diver-
sity (Chivers et al. 2010, Martien et al. 2014). 

The MHI insular population is the most thoroughly 
studied population of false killer whales in the 
world, with numerous boat-based surveys, photo-
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identification, satellite-telemetry, and genetic stu -
dies conducted over the last few decades (Baird 
2016). Individually, each of these data streams pre-
sents unique challenges to estimate crucial metrics 
(such as abundance and population growth rate) to 
monitor this endangered population. For example, 
there is variable boat-based survey effort around the 
MHI, and as this population is wide-ranging, these 
surveys will only encompass a small proportion of 
the population’s range in any given period. Weather 
and sea conditions generally further restrict areas 
viable for visual sampling, with surveys almost 
exclusively conducted on leeward sides of islands 
protected from trade winds (Baird et al. 2013, 2024). 
Without information on individual space use (e.g. if 
animal movement is random with respect to island 
geography), it is unclear how this sampling may 
affect capture availability and subsequent metrics. 

Substantial work has been done to estimate abun-
dance for this population through photo-identifica-
tion-based capture–recapture (CR) models, generat-
ing estimates that are robust to many forms of 
sampling variability and bias (Bradford et al. 2018). 
However, availability bias is inadequately accounted 
for within conventional CR models (Marsh & Sinclair 
1989, Hammond et al. 2021). Abundance estimates 
resulting from conventional CR models only repre-
sent the sampled population in each year rather than 
the annual full population abundance. As it is unclear 
what proportion of the MHI false killer whale popula-
tion is sampled each year, the estimates obtained by 
Bradford et al. (2018) were insufficient to determine 
population trend, and thus difficult to incorporate 
into recovery plans. 

Here, we estimate yearly abundance and long-
term trend of the MHI insular population of false 
killer whales from 1999 to 2022 using a novel CR 
modeling technique that incorporates animal space 
use information to more fully alleviate sampling bias 
concerns (detailed in Badger et al. 2024). Our results 
provide a more robust estimate of yearly abundance 
and recent population trends, allowing an examina-
tion of this population’s dynamics since it was listed 
as endangered. 

2.  MATERIALS AND METHODS 

2.1.  Data collection 

Data used in this analysis were predominantly 
sourced from dedicated nonrandom, nonsystematic 
small-boat surveys for odontocetes conducted by 

Cascadia Research Collective (CRC) from 1999 to 
2022 (Fig. 1). Collectively, CRC has conducted sur-
veys of nearshore waters around all MHI; however, 
only a few areas can be surveyed every year and more 
than half of the effort has been undertaken off of 
Hawai‘i Island (Baird et al. 2024). Generally, 1–6 
occasions of such efforts lasting 1–6 wk were con-
ducted throughout each year. Areas selected to be 
surveyed are designed to maximize the probability of 
animal encounters (details of the field operations are 
provided in Baird et al. 2013, 2024). Even with this 
focused sampling, false killer whales are only rarely 
encountered, with just 124 group sightings from 1999 
to 2022, making up 3.8% of all odontocete sightings 
(Baird et al. 2024). At each false killer whale group 
sighting, researchers recorded the location of the 
group and took photographs for individual identifica-
tion based on the prevalence of persistent markings 
(e.g. nicks, notches) on the leading and trailing edge 
of the dorsal fin (Baird et al. 2008). Individuals consid-
ered ‘distinctive’ or ‘very distinctive’ (Baird et al. 
2008), hereafter characterized as ‘distinctive’, were 
assigned to 1 of 4 identified social clusters using the 
analysis of network modularity explained in Mahaffy 
et al. (2023). 

Along with their own archive, CRC has curated 
photos from other research groups, such as NOAA 
Fisheries Pacific Islands Fisheries Science Center 
(PIFSC), the Pacific Whale Foundation (PWF), and 
Wild Dolphin Foundation (WDF) as well as from 
ocean users such as whale watch operators and photo-
graphers (Fig. 1). High-quality photographs of dis-
tinctive individuals from all relevant sources were 
combined following Bradford et al. (2018). Encounter 
data were then compiled at the annual scale, with dis-
tinctive individuals recorded as either encountered or 
not encountered each year. 

When crew expertise, ocean conditions, and animal 
behavior allowed, CRC and PIFSC research efforts 
also included satellite tag deployments to obtain in -
formation on false killer whale space use (see Baird et 
al. 2010). Between 2007 and 2022, whales were tagged 
using location-only satellite tags (SPOT5 or SPOT6; 
Wildlife Computers), or location-and-dive behavior-
transmitting satellite tags (SPLASH10 or SPLASH10-F 
Fastloc®-GPS; Wildlife Computers) in the low-
impact minimally percutaneous external-electronics 
transmitter (LIMPET) configuration (Andrews et al. 
2008). Relevant permits for tagging were issued by 
NOAA Fisheries, and the methods were approved by 
the Institutional Animal Care and Use Committees 
of CRC and PIFSC. The tags were deployed with a 
 pneumatic projector and attached using two 6.7 cm 
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surgical-grade titanium darts with backward-facing 
petals to the dorsal fin (or just below the fin) of the 
whales. Tag duty cycles were configured to transmit 
during hours with the greatest probability of a satel-
lite pass occurring in the study area. 

Prior to analyses, location data were filtered 
through the Douglas-Argos Filter (Douglas et al. 
2012) via Movebank (Kranstauber et al. 2011) to filter 
out locations based on unrealistic traveling speeds 
and turning angles (see Baird et al. 2012 for user-
defined settings). Fastloc®-GPS locations for relevant 
tag deployments (n = 2) were filtered by first exclud-
ing locations with residual values greater than 35 and 
time errors greater than 10 s (Dujon et al. 2014). 
Resulting GPS locations were then processed through 
a general speed filter via Movebank (Kranstauber et 
al. 2011). When tags were deployed on multiple indi-
viduals from the same group, one of each pair of 
tagged individuals moving in concert was removed 
before analyses to avoid pseudoreplication, allowing 
tagged individuals to represent their respective 
group (see Schorr et al. 2010 for details). 

2.2.  Statistical analysis 

To account for the spatiotemporal variability in 
sampled areas, we used a novel pseudospatial tech-
nique following Badger et al. (2024). This method 
involves estimating the coverage of survey effort 
relative to animal space use, hereafter referred to 
as ‘overlap’, and using this variable to inform 
animal availability within a CR model. The multistep 
process entails (1) computing a kernel density esti-
mate of individual tagged whales and scaling to 
social clusters to estimate population-level ‘animal 
space use’; (2) computing kernel density estimates 
of survey effort from research groups and ocean 
users to obtain estimates of ‘survey coverage’; (3) 
determining availability of animals to survey cover-
age by finding the interaction between (1) and (2), 
or the overlap, using Bhattacharyya’s affinity (BA); 
and (4) incorporating this overlap measure within 
the detection process of an open-population Jolly-
Seber CR model (Jolly 1965, Seber 1965) fit in a 
Bayesian framework. 
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Fig. 1. Tracks from cetacean surveys conducted by Cascadia Research Collective (CRC), Pacific Islands Fisheries Science 
Center (PIFSC, with systematic ship surveys in light grey), Pacific Whale Foundation (PWF), and Wild Dolphin Foundation 
(WDF), as well as other opportunistic contributors, from 1999 to 2022 in the main Hawaiian Islands. The extent of the mapped 
tracklines represents the boundary of the main Hawaiian Islands insular false killer whale population (Bradford et al. 2015)
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2.2.1.  Describing animal space use 

As described in Badger et al. (2024), first, for each 
tagged false killer whale, locations were fit to a 
 continuous-time correlated random walk (CTCRW) 
model using the R (v.4.2.2; R Core Team 2022) pack-
age ‘crawl’ (v.2.2.1; Johnson et al. 2008) to account for 
location error and predict locations (paths) from 
observed animal locations. These imputed paths were 
then rerouted around islands using the R package 
‘pathroutR’ (London 2020). Then, individual utiliza-
tion distributions (UDs) were described by a kernel 
density estimator (KDE) using the R package ‘ks’ 
(Duong 2007). For the KDE, we used a plug-in band-
width (hi) equal to: 

                                                      (1) 

where ∑i is the covariance matrix among locations for 
the i th individual and nei is the effective sample size 
(ESS), as described by Gelman et al. (2013) and 
updated in Vehtari et al. (2021), of the i th telemetry 
data set. The ESS uses the correlation structure of the 
CTCRW model to assess the effective number of 
observations that will be less than the total number of 
observed locations, which will inflate the kernel size. 
This approach seeks to produce a more predictive UD 
that accounts for the limited time observation of an 
animal’s correlated travel, similar in effect to the 
autocorrelated KDE (AKDE, Fleming et al. 2015). The 
full form of the KDE for the i th tagged individual, ƒ̂i, is 
given below. 

Let s = (s1,...,sn) be tag locations, such that sj = 
{xj,yj}, where j ∈{1,...,ni} and ni is the total number of 
locations for the i th individual. Then, 

                                                                     (2)
 

where K is a Gaussian kernel, i.e. .  

The resulting ƒ
i was then normalized to sum to 1 over 

the study area. 
The resulting UD provided a density surface for 

individual presence in space. However, in order to 
use the tag data information for animals not equipped 
with telemetry tags in the CR sample, we required an 
estimate of population-level space use to determine 
animal availability during our survey efforts. While 
there are many ways to weight individual UDs when 
averaging (see Conn et al. 2022), we aimed to develop 
an overall use index for use as a covariate in a CR 
model that can be adjusted to best model detections 
using the associated coefficients of the model. There-
fore, we used the straight average UD. Given that this 

population is known to be affiliated as stable, distinct 
social clusters, these individual UDs were summed by 
social cluster to a ‘cluster UD’, henceforth referred to 
as UDc, where c ∈{1,2,3,4} for the current 4 cluster 
designations (Fig. 2). 

2.2.2.  Defining survey effort 

Survey effort for the purpose of this analysis was 
computed using time-specific kernel density esti-
mates based on contributor coverage of the waters 
around the MHI. CRC’s surveys were nonsystematic 
and nonrandom, although they did attempt to cover a 
broad range of habitats and space over the course of 
each sampling period. Alternatively, PWF generally 
used a systematic approach, and other ocean users 
opportunistically encountered false killer whales on 
routine whale- or dolphin-watching tours or fishing 
routes. PIFSC encountered false killer whales while 
on systematic ship-based surveys, such as the Hawai-
ian Islands Cetacean and Ecosystem Assessment Sur-
vey (Yano et al. 2018), as well as on nonsystematic and 
nonrandom ship and small-boat surveys. 

As each contributor to the photo-identification ar-
chive used varying methods to encounter false killer 
whales throughout the study, we used a flexible ap -
proach to defining effort. For the 3 largest contri -
butors to the archive (CRC, PWF, and PIFSC), survey 
tracks were recorded via an affixed GPS for almost the 
entire time series (details of the field operations 
for PWF are provided in Stack et al. 2019). WDF, an -
other main contributor, provided GPS tracks when 
available, but these were not recorded for many years. 
WDF, along with other organizations and other con-
tributing ocean users, were able to define regularly 
covered areas that for many of these sources, were vis-
ited daily throughout the year. We randomly sampled 
1000 points within these defined effort areas (using R 
package ‘sf’; Pebesma 2018) for inclusion in the KDE 
for each year the contributor was active. Photographs 
from individuals or groups that did not provide any ef-
fort information were not included in this analysis, al-
though these photos accounted for only a very small 
proportion of the total yearly records (~3.6%). 

We computed survey effort coverage using a sim-
ple KDE of survey tracks and sampled points from 
effort areas e for each year t, subsequently referred to 
as UDe,t for t ∈{1,...,T }, where T is the data time series 
length, and with a bandwidth based on a reasonable 
maximum sighting distance from the survey vessels 
(2 km on each side). Although this seems like a large 
maximum detection distance, false killer whales are a 
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highly surface-active species that are typically only 
surveyed during ideal weather conditions. 

2.2.3.  Computing the overlap metric 

To calculate the overlap between animal space use, 
UDc, and survey efforts, UDe,t, we computed BA: 

                                        (3) 

where UDc(x,y) and UDe,t(x,y) are the values of the UD 
of the clusters and survey efforts, respectively, at 
the point (x,y) in the year t, where t ∈{1,...,T}. This 
overlap measure was then standardized over time for 
modeling purposes, i.e.:  

                             Overlapc,t =                               

where  

                                                                                                                                    (4) 

2.2.4.  Model form 

We used the overlap variable as a covariate in 
the detection process of a hierarchical Jolly-Seber 
open-population CR model to estimate abundance 
(Jolly 1965, Seber 1965, also see Kéry & Schaub 
2012). As described in Badger et al. (2024), at each 
sampling occasion (in this case, year), individuals 

BAc,e,t = UDc (x, y) $ UDe,t (x, y)#
x
#

y

v
BAc,e,t n−

n =
T
1

1

T/ and v =
T

R (BAc,e,t n) 2

BAc,e,t
−
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Fig. 2. (a–d) Cluster-level space use of main Hawaiian Islands insular false killer whales determined from kernel density esti-
mators of location data from 53 satellite-tagged groups from 4 social clusters from 2007 to 2022. The extent of the mapped area  

represents the boundary of the main Hawaiian Islands insular false killer whale population (Bradford et al. 2015)
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can be in 1 of 3 possible states: ‘not yet entered’, 
‘alive’, or ‘dead’, and transitions among these states 
are governed by 2 ecological processes: entry and 
survival. 

Suppose we have an augmented population of M 
individuals, of which N are genuine and M – N are 
pseudo-individuals. Entry is described using y, the 
probability that governs movement from the state 
‘not yet entered’ (i.e. appended animals not entered 
in the population of interest yet) to the state ‘alive’. 
The state of individual i at the first occasion is deter-
mined by a Bernoulli trial with probability y at the 
first time step: 

                                 zi,1 ~ Bernoulli(Ψ1)                            (5) 

Subsequent states are determined either by survival, 
f, for an individual already entered (zi,t = 2) or by 
entry, Ψt, for those that have not (zi,t = 1) via a tran-
sition matrix: 

                                                                                       

                                                                                                 (6) 

Similarly, observations are governed by a detection 
process with detection probability p, that depends on 
an individual’s cluster assignment, ci: 

                                                                                           

                                                                                                 (7) 

where logit(pi,t) = at + d × overlapci,t, with estimated 
parameter intercepts at and coefficient for overlap d. 

Population abundance in a given year, Nt, is then 
defined as the number of distinctive individuals in the 
‘alive’ state; that is, Nt = SiI(zi,t – 2), where I(x) is an 
indicator that x = 0. 

We fit a saturated model, with time-varying detec-
tion, entry, and survival. To ease model fit and iden-
tifiability, we set the mean detection of the first 2 
occasions equal (a1 = a2) and used a smoothed 
function (penalized regression splines) of survival. 
To achieve the smooth function, in pre-processing 
we simulated binomial draws based on the pre-
viously estimated constant annual survival rate 
(0.94; Bradford et al. 2018), fit a generalized additive 
model (GAM) using the R package ‘mgcv’ (Wood 
2011), and extracted the values of the linear predic-
tor, coefficients, and  variance–covariance matrix 
from the model fit as the prior for the sequence of 
survival estimates. 

2.2.5.  Accounting for nondistinctive individuals 

Importantly, in using photo-identification for CR 
analyses, abundance estimates Nt will only reflect the 
number of distinctive individuals in the population, as 
nondistinctive individuals are excluded from our data 
set (until they become distinctive; Hammond et al. 
1990). To estimate total abundance, we must adjust 
abundance estimates by the proportion of the popula-
tion that is distinctive in each year (qt). Total abun-
dance is then estimated by the Horvitz-Thompson 
ratio Ntotal,t = Nt ∕ qt, where Ntotal,t is the abundance of 
all individuals (distinctive and nondistinctive) at each 
capture occasion t. 

We estimated qt in pre-processing using photo-
graphs taken from encounters by CRC where the 
number of nondistinctive and distinctive individuals 
were determined in each encountered group to esti-
mate the proportion of distinctive individuals in the 
population in each year, expanding on the approach 
of Bradford et al. (2018) by accounting for variation 
through time and including all observed groups re -
gardless of size. We fit a binomial (logit link) GAM to 
these data using the R package ‘mgcv’ (Wood 2011) 
with year as a covariate to obtain a smoothed function 
of the proportion of distinctive individuals by year. 
We then extracted the values of the linear predictor, 
coefficients, and variance–covariance matrix to gen-
erate a prior on the time series of qt. At each iteration 
of the CR Markov chain Monte Carlo (MCMC; see 
details in Section 2.2.8), we pulled predicted curves 
from this model (Fig. 3) to appropriately propagate 
uncertainty in qt to the Ntotal,t calculation that ad -
justed our abundance estimates to ac count for non-
distinctive individuals in the population. For CRC 
encounters, efforts were consistently made to photo-
graph all individuals in each group, regardless of dis-
tinctiveness. Given that CRC en counters comprise 
the majority of this data set, we deemed it reasonable 
to apply estimates of q from CRC encounters to those 
from all contributors. 

2.2.6.  Trend estimation 

To determine the trend in abundance for this pop-
ulation, we regressed the series of generated total 
population sizes Ntotal,t against time for each iteration 
of the MCMC, estimating a population trend as the 
slope parameter of the regression model that quan-
tifies the change in abundance over time. This method 
results in a posterior distribution of trends that trans-
lates the uncertainty in these abundance estimates to 
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necessary uncertainty in population trend. As another 
method to present population trend, we calculated the 
annual percent change in abundance estimates at 
each iteration of the MCMC. 

2.2.7.  Simulations of model performance 

Simulations of this model’s performance under 
varying conditions were conducted in Badger et al. 
(2024) and showed that it was robust to many realistic 
complications, such as variable cluster-level space 
use and low detectability. Upon fitting the pseudospa-
tial model to the full false killer whale data set, we 
conducted further simulations to examine how the 
performance of this model is affected by some of the 
complications arising in our system, such as variable 
tag deployment durations, population trends, and 
variable cluster abundances. Following the procedure 
in Badger et al. (2024), we simulated animal move-
ments, survey efforts, and resulting capture histories 
of 300 individuals comprising 3 clusters. Starting loca-
tions for group-level movements and survey effort 

were chosen at random at each of 10 time steps, and 
subsequent movement and survey tracks were mod-
eled as correlated random walks (using package ‘ade-
habitatLT’ v.0.3.26; Calenge 2006). For each of the 10 
time steps, surveys would detect individuals with a 
detection probability of 0.2 if they were <2 km from 
the survey vessel. The resulting capture histories were 
then fit to a pseudospatial Jolly-Seber model outlined 
above in a Bayesian framework. Six simulated individ-
uals from each cluster were telemetered, and their lo-
cations were used to estimate the cluster-level UDs for 
which survey overlap was determined. 

Tag deployment durations were either equal among 
tags, at a mean of 62.86 d, or were pulled from a nor-
mal distribution with parameters m = 62.86 d and s2 = 
48.23 truncated to >0, the sample mean and standard 
deviation derived from available telemetry data. We 
also simulated positive and negative trends in abun-
dance, with the slope of abundance over the time 
series as –5 or +5 individuals per annum. As we also 
want to ensure the pseudospatial model did not per-
form poorly relative to the conventional CR model in 
conditions with variable population trajectories, we 
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Fig. 3. Output of generalized additive model fit to the proportion of distinctive individuals in sightings of main Hawaiian Is-
lands insular false killer whales by the Cascadia Research Collective from 1999 to 2022. Black line and grey shaded area: mean 
and 95% confidence interval of the predicted relationship between proportion distinctive and year. Red lines: sample draws of 
the multivariate normal distribution estimated by the model output, which comprised the prior distribution used for proportion  

distinctive in the capture–recapture Markov Chain Monte Carlo
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also compared our model to a conventional model 
in altering trends. Cluster abundances were either 
equal, with 100 individuals in each group, or unequal, 
distributed as 50, 100, and 150 individuals. 

As described in Badger et al. (2024), this procedure 
was repeated 30 times per set of conditions (equal vs. 
unequal cluster abundances, equal vs. unequal tag de-
ployment durations, positive vs. negative population 
trends) to observe the range of probabilistic outcomes 
in capture histories. For each model, we report the dif-
ference in posterior precision, the number of inaccu-
rate abundance estimates (see below), and the propor-
tion of simulated data sets whose abundance estimates 
exhibit an inaccurate trend. We define an inaccurate 
abundance estimate as one where the 90% credible in-
terval (CRI) of the posterior distribution did not con-
tain the true population size. To detect inaccurate 
trends, at each iteration of the Bayesian MCMC, we 
regressed derived abundance estimates over time and 
defined an inaccurate trend if the 90% CRI of the re-
sulting slope parameter posterior distribution was 
 distinct from the simulated trend (–5, 0, or +5). 

2.2.8.  Model fitting and selection 

The pseudospatial CR model, as well as a null 
model without the overlap variable, was fit to the 
annual encounter histories compiled for each rel-
evant individual in the photo-identification data set. 
For further exploration of model formulations of a 
conventional Jolly-Seber model fit to a previous ver-
sion of this data set, see Bradford et al. (2018). A Bay-
esian framework was used for model fitting, selection, 
and inference using the software JAGS (v.4.2.0) 
through the R interface ‘rjags’ (Plummer 2003, 2018). 
We used an informative Beta(8,2) prior for survival 
rate f (given the longevity of false killer whales), but 
otherwise uninformative priors, namely Uniform(0,1) 
distributions for entry parameters y constrained to 
[0,1], and Cauchy (0, 2.5) distributions for detection 
parameter intercepts mt on the logit scale (Gelman et 
al. 2008). The coefficient parameter describing the 
effect of overlap, d, was given a diffuse Student-t(0, 
2.5, df = 5) (Gelman et al. 2008). 

For each model, we ran 3 chains with different sets 
of initial values to sample the posterior distributions 
of parameters of interest. For each chain, the first 
10 000 MCMC iterations were discarded after having 
checked that convergence was satisfactory (referred 
to as the ‘burn-in’ period). We visually evaluated the 
convergence of chains to stationary distributions 
using both sample trace plots as well as the Brooks-

Gelman-Rubin diagnostic (Brooks & Gelman 1998), 
with values close to 1.00 indicating adequate conver-
gence. We then ran chains for an additional 200 000 
iterations, for a total of 20 000 MCMC samples used 
for inference. We assessed support for the inclusion 
of overlap using a measure of out-of-sample predic-
tive ability, the widely applicable information crite-
rion (WAIC; Watanabe 2010), where a model with a 
smaller WAIC is judged a better fit. 

3.  RESULTS 

Collectively, survey efforts from 416 d between 
1999 and 2022 resulted in a photo-identification data 
set of 265 distinctive individuals represented by high-
quality photographs from sources with effort informa-
tion that can be translated into yearly encounter his-
tories for use in CR models. The number of distinctive 
individuals varied by cluster, with 72 individuals 
identified from Cluster 1, 52 from Cluster 2, 85 from 
Cluster 3, and 46 from Cluster 4. The telemetry data 
set included 53 satellite-tagged groups from the 4 
social clusters (Cluster 1, n = 27; Cluster 2, n = 5; 
Cluster 3, n = 16; Cluster 4, n = 5), ranging from 12 to 
199 d of data (mean = 62.5; median = 48.8 d) that were 
analyzed for population-level space use (Fig. 2). 

We fit the pseudospatial and conventional Jolly-
Seber model to the 265 individual encounter histories 
over the 24 yr period and found strong support for the 
pseudospatial model formulation (DWAIC = 28.6). 
The most recent abundance estimate is 139 individ-
uals (95% CRI = [124, 161]) in 2022 (Table 1). The pos-
terior distribution of the parameter describing the 
effect of overlap on detection probability was dis-
tinctly positive (posterior mean = 0.64, 95% CRI = 
[0.41, 0.88]), indicating that years with higher survey 
overlap with cluster-level space use had higher detec-
tion probabilities (Fig. 4). Our analysis found that the 
proportion of distinctive individuals appears to 
slightly decline across the time series, from roughly 
75% of the individuals in encountered groups desig-
nated as distinctive in early years to about 70% in 
2022 (Table 1, Fig. 3). 

We found a negative trend in the abundance esti-
mates with time (posterior mean slope = –1.31 ani-
mals yr–1; Fig. 5), though the 95% CRI of the posterior 
distribution of this derived parameter spanned 0 (95% 
CRI = [–2.92, 0.141]; Fig. 6). The posterior distribu-
tion indicates that there is a 78.6% probability that the 
trend is negative over the entire time series, though 
the relationship between abundance estimates and 
time does not appear linear (Fig. 5). We also report the 
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trend for the last 10 yr of abundance estimates (2013–
2022), which is distinctly negative (posterior mean = 
–5.68 animals per year, 95% CRI = [–8.99, –2.14]; 
Fig. 6), with a 98.9% probability that the trend is neg-
ative over the 10 yr period. The mean annual percent 
change was –1.09 (95% CRI = [–2.11, –0.023]) over 
the entire time series and –3.51 (95% CRI = [–5.08, 
–1.88]) from 2013 to 2022. The decline in abundance 
across the entire time series is consistent among can-
didate models (conventional CR model trend mean 
slope = –1.19, 95% CRI = [–9.86, 2.03]). 

3.1.  Cluster-level results 

From our simulations (see below), it was clear that 
the full population model as formulated would not 
suffice for estimating true cluster-level abundances. 
Instead, we ran the model separately for each cluster. 
Many parameters were inestimable for Clusters 2 and 
4, which have more sparse data, resulting in poor con-
vergence of MCMC chains. Clusters 1, 3, and 4, 
which make up the most encountered groups in the 
data set, have similar estimated trends as the full pop-
ulation (Table 2). Cluster 2 is the only cluster with an 
estimated increasing trend, but the estimated abun-
dances in this model had poor convergence ( > 1.1). 

3.2.  Simulation results 

We found that the performance of the 
pseudospatial model is only marginally 
compromised by variable tag du ra -
tions, population trends, and cluster-
level abundances (Table 3). Models fit 
to data with variable tag durations esti-
mated accurate abundance and trends 
in 3% fewer of the simulated data sets 
than models with data simulated with 
constant tag durations. When fit to data 
generated with variable population 
trends, we find that the pseudospatial 
model can better estimate population 
size and trend than a conventional 
model, whether the population is grow-
ing, shrinking, or remaining constant. 
While the pseudospatial model still 
performs well under variable cluster-
level abundances, with 90% of fits in -
cluding an accurate estimate of true 
abundance, accurate trend detection 
was less fre quent at only 69%. Further -
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Year          No. of ind.     Ntotal,t [95% CRI]           q̂ [95% CRI] 
 
1999                20               175 [147, 204]         0.76 [0.65, 0.84] 
2000                21               184 [160, 210]         0.75 [0.66, 0.83] 
2001                19               185 [162, 210]         0.75 [0.66, 0.82] 
2002                 5                187 [163, 215]         0.75 [0.67, 0.81] 
2003                24               182 [160, 205]         0.74 [0.67, 0.79] 
2004                44               192 [174, 212]         0.74 [0.67, 0.80] 
2005                30               189 [175, 206]         0.73 [0.68, 0.78] 
2006                22               191 [178, 206]         0.73 [0.68, 0.77] 
2007                17               193 [181, 209]         0.72 [0.68, 0.77] 
2008                60               197 [181, 219]         0.72 [0.67, 0.76] 
2009                63               197 [174, 219]         0.71 [0.67, 0.75] 
2010                97               201 [184, 219]         0.71 [0.66, 0.75] 
2011                68               191 [173, 209]         0.71 [0.65, 0.75] 
2012                24               184 [167, 204]         0.70 [0.65, 0.75] 
2013                26               174 [157, 194]         0.70 [0.65, 0.75] 
2014                42               171 [153, 193]         0.70 [0.65, 0.75] 
2015                43               171 [154, 191]         0.70 [0.65, 0.75] 
2016                39               163 [145, 184]         0.70 [0.65, 0.75] 
2017                72               192 [157, 194]         0.70 [0.65, 0.75] 
2018                42               157 [142, 178]         0.70 [0.66, 0.75] 
2019                57               152 [137, 172]         0.70 [0.65, 0.75] 
2020                50               138 [123, 159]         0.71 [0.65, 0.76] 
2021                49               138 [119, 163]         0.71 [0.64, 0.77] 
2022                63               139 [124, 161]         0.71 [0.63, 0.78]

Table 1. Number of observed individuals, estimated propor-
tion of distinct individuals (q̂, estimated using a generalized 
additive model), and derived abundance by year (Ntotal,t, es-
timated from the pseudospatial Jolly-Seber model) for each 
year in the study. Values in brackets represent the 95%  

credible intervals (CRI)

Fig. 4. Overlap of survey efforts and social cluster-level space use of the main 
Hawaiian Islands insular population of false killer whales from 1999 to 2022,  

calculated using Bhattacharyya’s affinity
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more, upon post-processing calculation of cluster-
specific abundances, we found that the model did not 
accurately estimate the number of individuals in each 
cluster. As the total population size was still accurate, 
this is likely linked to cluster ‘label-switching’ within 
MCMC chains (Jasra et al. 2005). 

4.  DISCUSSION 

We estimated abundance for the 
MHI insular population of false killer 
whales using a pseudospatial model 
that accounts for animal availability in 
detection and found the population 
appears to have de clined since it was 
listed as endangered in 2013 (Fig. 5). 
Clusters 1 and 3, the most represented 
clusters in the data set, exhibited simi-
lar trends in abundance (Table 2). 
These results constitute the first robust 
trend estimates for this population. 

We note a decline in the proportion 
of distinctive individuals throughout 
the time series, from roughly 75% of 
the individuals in encountered groups 
designated as distinctive in early years 
to about 70% in 2022 (Fig. 4). We sus-

pect that this trend is an artifact of sampling limita-
tions rather than a true decline. Advancements in 
camera technology have allowed field photographers 
to have greater group coverage and higher quality 
photos of all individuals. In early years, film was the 
primary medium for photographs, and photographers 
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Fig. 5. Abundance of main Hawaiian Islands insular false killer whales, 1999–
2022, estimated using a pseudospatial Jolly-Seber model. Dots: posterior mean;  

error bars: 95% credible intervals

Fig. 6. Posterior distributions of estimated population trends for the entire main Hawaiian Islands insular population of false 
killer whales from (a) the entire time series, 1999–2022 and (b) the last 10 years of the study, 2013–2022. Trend was estimated 
as the slope parameter of a regression model fit to the abundance estimates over time and reflects the annual change in the  

number of individuals in the population
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were limited to 36 frames before having to change 
rolls, limiting the number of photos taken of each 
individual. The switch to digital cameras in the early 
2000s re moved this limitation, and as digital camera 
technology improved, the higher resolution increased 
the likelihood of high-quality photos being obtained 
of all individuals. Thus, capturing quality identifica-
tion photographs of small, fast-moving, and generally 
nondistinctive individuals in creased later in the time 
series. If the proportion of distinctive individuals in 
the first portion of the time series is biased high as a 
result, this may account for the coinciding increasing 
trend in abundance for those years (1999–2002). If 
left unaccounted for, this apparent decrease in the 
proportion of identifiable individuals over time would 
dampen the estimated magnitude of the population 
decline. It is possible that there has been a shift in the 
age structure in the population, with an increase in 
younger cohorts (less distinctive individuals) coinci-
dent with a decrease in older cohorts (more distinc-
tive individuals), given that individuals acquire mark-

ings as they age (Baird et al. 2008). 
However, the relatively low recruit-
ment of individuals into the distinctive 
(marked) population in recent years 
(R. W. Baird & S. D. Mahaffy unpubl. 
data) suggests that this is unlikely. 

Analyses of simulated data sets, both 
in this abundance analysis and in a pre-
vious analysis of a shorter time series 
(Badger et al. 2024), show that using 
the pseudospatial method will yield 
higher accuracy and precision in esti-
mating abundance and trend than con-
ventional models. These analyses also 
showed that the model’s performance 
is relatively unaffected by varying pop-
ulation trends, poor characterization of 
cluster-level space use, low detectabil-
ity, and un equal cluster abundances 

and tag deployment duration. These simulations were 
designed to target specific sample size considerations 
in this data set. First, there is a vast disparity in telem-
etry sample sizes among clusters, such that space use 
for Clusters 2 and 4 are informed by only 5 tagged 
false killer whale groups each (after accounting for 
pseudoreplication among tagged pairs), whereas 
Clusters 1 and 3 are in formed by 27 and 16 tagged 
groups, respectively. Not only did this sparsity inhibit 
our ability to adequately characterize cluster-level 
space use for Clusters 2 and 4 but it precluded us from 
estimating time-specific space use kernels and thus 
limited us to assume constant space use over time. 
Fortunately, simulations indicate that if this limita-
tion mischaracterizes space use, it does not reduce 
the quality of the abundance estimates to less than 
that of the conventional CR model (Badger et al. 
2024). Our model did estimate a positive effect of 
overlap on detection probabilities, indicating that 
our calculated overlap variable is at the very least not 
random with respect to observed encounter rates and 
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Simulated condition                      Model       % True      % True         Change in  
                                                                                     N             trend            posterior  
                                                                                                                            precision 
 
Variable tag duration                        PS               87                71                     – 
Constant tag duration                      PS               90                74                    1.01 
Decreasing trend                                C                82                58                     – 
Decreasing trend                                PS               85                62                    1.18 
Increasing trend                                  C                80                58                     – 
Increasing trend                                 PS               86                64                    1.19 
Variable cluster abundances          PS               90                69                     – 
Constant cluster abundances         PS               92                75                    1.03

Table 3. Performance of the pseudospatial (PS) and conventional (C) Jolly-
Seber open population model fit to 30 data sets under 8 different conditions 
noted (240 data sets total). % true N and % with true trend refer to the accuracy 
(90% credible interval) of posterior distributions of abundance and the slope 
parameter in a regression fit to yearly abundance estimates. The change in 
posterior precision was measured as the ratio of posterior standard deviations  

between 2 competing models

Cluster                    Trend                        Trend (2012–2022)               Mean annual %              Mean annual %             Probability  
                      (entire time series)                                                                 change (entire                       change                 decline of over  
                                                                                                                              time series)                     (2012–2022)                time series 
 
1                –1.84 [–3.42, –0.037]      –2.93 [–4.01, –1.65]        –1.48 [–0.93, 0.028]    –5.82 [–7.29, –3.22]             0.911 
2                   1.951 [–0.265, 3.87]             0.36 [–1.99, 1.29]             646 [–10.33, 4200.1]       0.039 [–1.77, 2.08]                0.038 
3                –0.352 [–1.393, 0.533]    –1.47 [–2.20, –0.605]          0.14 [–2.38, 0.25]         –1.7 [–5.02, 0.044]               0.655 
4                   –2.64 [–6.17, 1.26]           –1.82 [–3.62, 0.51]           16.66 [–73.7, 56.95]         –4.4 [–9.2, 0.44]                 0.946

Table 2. Main Hawaiian Islands insular false killer whale cluster-level posterior mean abundance trends estimated using the 
pseudospatial Jolly-Seber model. Probability of decline over time series is calculated from the posterior distribution of the  

slope parameter. Values are given as posterior mean [95% credible interval]
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likely explains some variability in availability. 
Clusters 2 and 4 are also underrepresented in the 
visual sighting data, affecting our ability to estimate a 
cluster-specific trend. Given that Clusters 2 and 4 are 
generally a small portion of the data regardless of 
sampling site, it may be that these social clusters have 
a smaller population size than Clusters 1 and 3. Our 
simulation exercise indicates that this discrepancy in 
cluster abundance will not greatly impact estimation 
of the full population abundance. Regardless, these 
findings do highlight the need for targeted field 
efforts in the known ranges of Clusters 2 and 4 (Baird 
et al. 2023) to better understand how cluster-level 
dynamics scale up to the population-level decline. 

The estimated decline in abundance is consistent 
among candidate models. Bradford et al. (2018) did 
not find a similar trend when fitting a conventional 
CR model to most of the same photo-identification 
data from 2000 to 2015. While some may argue this is 
an artifact of the modeling process and not reflective 
of a true decline in abundance, there is more evidence 
that the difference stems from the information in the 
additional data collected since 2015 as well as ad -
ditional data from prior to 2016 that were not avail-
able to Bradford et al. (2018). Badger et al. (2024) fit 
the pseudospatial model framework to the same data 
as Bradford et al. (2018), including the sightings data 
from 2000–2015 from one source (CRC, though the 
primary results in Bradford et al. 2018 include data 
from multiple sources) and also did not find a substan-
tial trend in abundance estimates. Further, we fit the 
pseudospatial model to the full time series of data 
contributed by CRC from 1999 to 2022, which is the 
largest portion of the data set with the best-described 
effort information, and found a similar decline with 
that data partition. While it garners confidence that 
the decline is apparent across data partitions and 
modeling frameworks, the pseudospatial model pro-
vides more reliable estimates that have accounted for 
sampling bias and is better suited to estimate the 
magnitude of this decline. 

Among the known threats to this population of false 
killer whales, interactions with fisheries have the ca-
pacity to cause immediate impacts to the population’s 
viability, as they can inflict injuries that impede sur-
vival or can be fatal. False killer whales in Hawaiian 
waters have been documented depredating catch in 
nearshore fisheries since the 1960s (Pryor 1975, Shal-
lenberger 1981). There are a variety of both commer-
cial and recreational hook and line fisheries around 
the MHI, and the target catch of these fisheries largely 
overlaps with the diet of false killer whales (Baird et al. 
2021). There are no observer programs in any of these 

nearshore fisheries, and strandings of false killer whales 
are extremely rare (Baird 2016), so evidence of inter -
actions (e.g. hookings) is indirect and limited. False 
killer whales that ingest hooks or are hooked in the 
mouth and struggle against gear may acquire injuries 
to the mouthline or dorsal fin that can be detected 
from photos taken during encounters (Baird et al. 2015, 
Harnish et al. 2024). Analyses of photographs over the 
same period as our abundance and trend analyses re-
veal that over one-quarter of individuals from this pop-
ulation have evidence of surviving prior fisheries in-
teractions (Harnish et al. 2024). While this method 
does not al low for an assessment of bycatch directly, it 
does re veal that depredation of bait or catch is wide-
spread among the population and that hooking occurs 
regularly. Hook ingestion may lead to mortality or de -
creased health and longevity for those that do survive 
(Wells et al. 2008). Furthermore, the Harnish et al. 
(2024) analysis noted that the proportion of individuals 
with such fishery-related injuries appeared to vary by 
cluster, from 19.4% (Cluster 2) to 38.2% (Cluster 4), al-
though this effect was not statistically significant. It is 
possible that cluster-specific differences in the rates of 
fishery interactions could contribute to the differences 
in population trend for each cluster. 

Other factors could also be playing a role, including 
reduced energy intake due to a reduction in prey size 
or availability, as well as possibly individuals being 
deliberately killed (Baird 2009, Oleson et al. 2010). 
While there is no direct evidence for intentional kill-
ing of false killer whales in Hawaiian waters, shooting 
of other species of odontocetes that are at least occa-
sionally involved in fishery interactions has been doc-
umented (Kuljis 1981, Tummons 1997, Harnish et al. 
2019). Other identified threats to the viability of the 
MHI insular false killer whale population include 
exposure to pollutants and reduced genetic diversity 
(Oleson et al. 2010). Of 56 individual biopsy samples, 
all adult males and about 1/3 of adult females in the 
population have levels of PCBs in the blubber that 
exceed a threshold that could cause impaired repro-
duction or immunosuppression, where sex-related 
variation in levels is due to maternal offloading of pol-
lutants to offspring (Kratofil et al. 2020). Analyses of 
mating patterns have indicated that between 36 and 
64% of matings occur within clusters, with the strong 
social structure further limiting genetic diversity in 
this small population (Martien et al. 2019). The syner-
gistic effects of 2 or more of these threats could have a 
strong impact on an endangered population. The loss 
of a single individual in such a long-lived species can 
have a meaningful, immediate effect on the dynamics 
of the population (Williams & Lusseau 2006). As a 
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highly social, group-living species with significant 
maternal investment (Mahaffy et al. 2023), false killer 
whales may also be less resilient to such exploitation; 
knowledge and leadership by older individuals and 
cooperative behaviors (e.g. hunting, possible allopa-
rental care) are key for survival and reproductive suc-
cess (Wade et al. 2012). 

This analysis could be improved in several ways for 
 uture abundance estimation. Firstly, the spatiotemporal 
nature of the data-generating process could be more 
explicitly defined and incorporated into the modeling 
framework. Current development of a continuous-
time, spatially explicit CR model incorporating a time 
inhomogeneous Markov-modulated Poisson process 
could address this point (Choquet 2018, Rushing 
2023). Additionally, as we were only able to estimate a 
static cluster-level space use layer for availability 
using the telemetry data, further information on tem-
poral variation in animal availability to survey efforts 
would improve our method. For example, passive 
acoustic monitoring data could be easily incorporated 
into this framework, although these data are currently 
limited to providing presence-only information in 
small areas over long time periods or broader regions 
over shorter time scales. However, while false killer 
whales can be distinguished acoustically from other 
species (Baumann-Pickering et al. 2015), it is not cur-
rently possible to attribute an acoustic detection to a 
specific population (Barkley et al. 2019). There is some 
overlap between the MHI in sular false killer whales 
and nearby populations (Baird et al. 2013, Fader et al. 
2021, Oleson et al. 2023); thus, incorporating passive 
acoustic monitoring data would need to take into ac-
count the potential for overlap among populations. In-
corporating ad ditional auxiliary data into abundance 
estimation will greatly aid recovery metric accuracy 
and power to detect trends, as well as stakeholder con-
fidence in management actions for this population. 

 
 

Data archive. Code and summarized data (encounter his-
tories, utilization distributions) that can be used to run a 
pseudospatial analysis can be found at https://github.com/
badgerjj/pseudospatialCR. The raw data from which these 
data were made belong to CRC and are subject to their data 
access requirements. 
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